skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shannon P Devlin, Noelle L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Given there is no unifying theory or design guidance for workload transitions, this work investigated how visual attention allocation patterns could inform both topics, by understanding if scan-based eye tracking metrics could predict workload transition performance trends in a context-relevant domain. The eye movements of sixty Naval flight students were tracked as workload transitioned at a slow, medium, and fast pace in an unmanned aerial vehicle testbed. Four scan-based metrics were significant predictors across the different growth curve models of response time and accuracy. Stationary gaze entropy (a measure of how dispersed visual attention transitions are across tasks) was predictive across all three transition rates. The other three predictive scan-based metrics captured different aspects of visual attention, including its spread, directness, and duration. The findings specify several missing details in both theory and design guidance, which is unprecedented, and serves as a basis of future workload transition research. 
    more » « less